2+ a 1 x + a 0 = 0 dengan a n 0 dan n > 2. 2) Persamaan transenden, persamaan yang mengandung fungsi-fungsi trigonometri, logaritma, atau eksponen. Contoh 2.2: ex + cos x = 0 ln x - 4 = 0 3) Persamaan campuran, persamaan yang mengandung persamaan polinom maupun persamaan transenden. Contoh 2.3: x2 sin x + 5 = 0 x3 + 2 ln x = 0 2.2 Lokalisasi Akar \left( \sin ( x ) \right) }^{ 2 } \cdot \left( { \left( \cot ( x ) \right) }^{ 2 } +1 \right) \cos ( \pi ) \tan ( x ) Sebagai akibatnya (λ – 1) haruslah merupakan factor dari ruas kiri persamaan (2). Dengan bantuan teorema sisa, yaitu membagi persamaan (2) oleh (x – 1) kita dapatkan dua nilai λ lainnya, yaitu λ2 = 2 dan λ3 = 3, sehingga akar dari persamaan (2), yaitu λ1 = 1, λ2 = 2, dan λ3 = 3 adalah nilai-nilai eigen dari matriks A. Catatan SQR(i) = perintah untuk pangkat SQRT(i) =untuk akar Rumus matematika: Sec = 1/cos Tan = 1/ cos 1. Contoh : Menggunakan Rumus Pytagoras Denganpembagian bayangan yang cepat, kita mengetahui bahwa 400 dibagi 25 sama dengan 16. Secara kebetulan, 16 juga merupakan kuadrat sempurna. Dengan demikian, faktor-faktor kuadrat sempurna dari 400 adalah 25 dan 16 karena 25 × 16 = 400. Kita dapat menulisnya sebagai: Akar (400) = Akar (25 × 16) 2. Carilah akar kuadrat dari faktor-faktor sin2x bisa diubah menjadi bentuk lain.. sin 2x = 2. sin x. cos x. sin 2x = 2. 1 / √10 . 3 / √10. kalikan 1 dan 3. kalikan √10 dengan √10, sehingga hasilnya 10. sin 2x = 2. 3 / 10. kalikan 2 dan 3 sehingga hasilnya 6. sin 2x = 6 / 10. sederhanakan Soalintegral x 2 akar x 4-6. Jawaban lengkap dari soal UN dan SBMPTN untuk kelas 11. Matematika kelas 12Dukung channel ini dengan subs. Mar 08 2021 Jadi hasil dari x 2 1 sin x dx adalah 1 x 2 cos x 2x sin x C. Int 2 2 X 3cos X 2 1 2 Sqrt 4 X 2 Dx. Limit Of X 2 2x 8 X 4 As X Approaches 4 Youtube. Integral Of 1 Sqrt 9 X 2 Dx Youtube. PendekatanPencarian Akar-akar Persamaan Metode Pencarian Akar Persamaan > Metode Pengurung - metode Tabulasi & Grafis - metode Bagi dua (Bisection)- metode Posisi Palsu (Regula Falsi)> Metode Terbuka AHnQ6. Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0904Sebuah talang air akan dibuat dari lembaran seng yang leb...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0653Himpunan semua bilangan real x pada selang [pi, 2 pi] y...Teks videojika kita menemukan salah seperti ini terlebih dahulu dalam memahami yaitu konsep persamaan trigonometri di sini ke ditanyakan itu hp-nya atau himpunan penyelesaian dari persamaan ini dan kita akan menggunakan yaitu rumus persamaan trigonometri Di mana Sin X = Sin Alfa disinilah dapat 2 rumus di mana Alpha plus minus x * 30 derajat atau 2180 derajat dikurang Alpha plus minus k dikali 360 derajat dan dingin saya paparkan juga identitas trigonometri akan kita gunakan hingga di sini tak tulis kembali yaitu untuk persamaannya Sin X dikurang yaitu cos x = akar 2 Kemudian dari sini kita kalikan akar di mana kita kuadratkan yaitu dalam kurung Sin X dikurang cos x ^ 2 = 2 kemudian kita jabarkan di mana ini Sin kuadrat X dikurang yaituSin x cos X kemudian dijumlah plus yaitu cos kuadrat x = 2 cm di sini rata-rata di mana ini Sin kuadrat ditambah yaitu cos kuadrat X dikurang 2 Sin x cos x = 2 kita lihat untuk Sin kuadrat x + cos x = 1 sehingga ini dapat kita ubah yaitu 1 dikurang di mana 2 Sin x cos X ialah sin 2x sehingga disini dikurang yaitu sin 2x = 2 kemudian kita lanjutkan di sini yaitu menjadi Min sin 2x = 1 karena satu ini pindah rumah jadi 2 dikurang 11 kemudian sini sin 2x = min 1 sehingga dari sini bisa tulis rumusnya yaitu sin 2x = Sin Di mana hasilnya?min 1 ialah 270 derajat sehingga 2x = 270 derajat plus minus dikali 360 derajat hingga X = terbagi dua yaitu menjadi 135° plus minus dikali 180 derajat kemudian di sini juga kita ketahui yaitu untuk kayaknya sama dengan nol maka x nya sama dengan di sini 01 80 derajat dikali 00 sehingga nilai 135 derajat kemudian jika x y = 1 maka x y = 1 x 180 derajat 80 derajat kemudian dijumlah 135° hasilnya 315 derajat kemudian di sini setelah kita menggunakan yang Alfa plus minus X * GX berderajat kita menggunakan yang keduanya yaitu 2 x = dalam180 derajat dikurang 270 derajat tutup kurung plus minus dikali 360 derajat Di mana hasilnya ialah 2x = 90° plus minus dikali 360 derajat kemudian di sini eh = 3 / Sisi ini dibagi dua yaitu Min 45 derajat plus minus 3 dikali 180 derajat dari sini Bu kita ketahui di mana di sini untuk Kanya = 0 maka x y = 180 derajat dikali 00 sehingga X = min 45 derajat ini salah kemudian katanya = 1 maka x y = 180 derajat dikali 12 derajat kemudian ditambah minus 40 derajat Celcius ialah 135 derajat kemudian di sini Jika kan Y = 2maka x nya dimana 180 derajat dikali 23 derajat kemudian ditambah min 40 derajat hasilnya 315 derajat dari sini dapat kita ketahui bahwasannya untuk cara pertama dan kedua himpunan penyelesaian nya sama sini kita tulis yaitu untuk hp-nya atau himpunan penyelesaian nya ialah 135 derajat dan 315 derajat jawabannya yang D sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriNilai x yang memenuhi persamaan 2 akar3 cos^2 x-2sin x cos x-1-akar3=0, untuk 0<= x<=360 adalah ... a. {45,105,225,285} b. {45,135,225,315} c. {15,105,195,285} d. {15,135,195,315} d. {15,225,295,315}Persamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0904Sebuah talang air akan dibuat dari lembaran seng yang leb...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0653Himpunan semua bilangan real x pada selang [pi, 2 pi] y...Teks videokeren kali ini kita akan mencari nilai x yang memenuhi persamaan trigonometri di mana untuk interval x nya kurang dari atau = 360 derajat dan lebih dari atau sama dengan nol derajat nah disini kita perlu diingat rumus-rumus dari trigonometri Di mana Sin 2 Alfa itu = 2 Sin Alfa dikali cos Alfa kemudian Cos 2 Alfa = 2 cos kuadrat Alfa min 1 dan Sin Alfa Min beta itu = Sin Alfa dikali cos beta Min cos Alfa dikali Sin beta Nah di sini 2 akar 3 cos kuadrat X = min √ 3 kita jadikan satu tinggal di sini 2 akar 3 cos kuadrat X kemudian dikurangi dengan √ 3 kemudian min 2 Sin x cos X maka menjadi Sin 2 X dikurang 1 sama dengan nol kemudian akar 3 kita keluarkan kalau akar 3 kita kelasnya menjadi 2 cosKuadrat x min 1 dikurang sin 2x dikurang 1 sama dengan nol. Nah √ 3 itu kan = 60 derajat ya jadi Tan 60 derajat Itu sama dengan akar 3 di mana kita tahu Tan itu Sin per cos maka dapat kita tulis Sin 60 derajat dibagi dengan cos 60 derajat 3 akar 3 ini dapat kita tulis Sin 60 derajat dibagi dengan cos 60 derajat kemudian 2 cos kuadrat x min 1 menjadi cos 2x cos 2x dikurang sin 2x kemudian min 1 Kita pindah Ros makan sama dengan 1 lalu di sini kita samakan penyebutnya a maka Sin 60 derajat dikali dengan cos 2x kemudian dikurangi dengan cos 60 derajat dikali dengan sin 2x kemudian dibagi dengan cos 60 derajat = 1. Nah ini kita kali silang lalu sin cos cos Itu kan = Sin Alfa Min beta Blade ini Alfa ini ditanya berarti Sin 60 derajat dikurang dengan 2 x maka = cos 60 derajat dikali 1 cos 60 itu adalah setengah nama kan disini kita dapat Sin 60 derajat min 2 x = setengah Kemudian untuk mencari nilai x kita gunakan rumus dari persamaan trigonometri untuk rumus persamaan trigonometri yaitu teen X = Sin Alfa maka dapat kita cari nilai x nya yaitu = Alfa + K dikali 360 derajat atau X = 180° Sin Alfa ditambah k dikali 360 derajat. Di manakah ini merupakan elemen bilangan bulat Nah kita jadikan Sin di mana kita tahu Sin 30° itu adalah setengah maka dapat kita Tuliskan Sin 60 derajat min 2 x ini = Sin 30 derajat sehingga dapat kita Tuliskan untuk yang pertama 60 derajat Min 2x ini = 30 derajat ditambah k dikali 360 derajat kemudian di sini min 2 x = 6 derajat kita pindah ruas berarti 30 derajat dikurang dengan 60 derajat 30 derajat + k dikali 360 derajat kemudian ke 200 kita bagi dengan negatif 2 sehingga x = 15 derajat kemudian ditambah dikurangi akar 6 minus dikurang k dikali dengan 180° Nah di sini karena Kak merupakan elemen bilangan bulat kita coba nilai kakaknya itu = negatif 2 Naji kakaknya negatif 2 maka nilai x nya sama dengan 160 derajat ditambah 15 375 derajat nah ini tidak memenuhi karena 0-360 derajat kemudian kita coba kakaknya = negatif 1 maka untuk nilai x nya ini = 108 derajat ditambah 15 195° ini memenuhi kemudian kita coba tanya sama dengan nol maka untuk nilai x nya = 15 derajat di sini kita cukupkan sampai dengan K = 0 kalau k = 1 nanti negatif 3 x = 195 derajat dan x = 15 derajat untuk yang kedua X = 108 derajat Min Alfa + K dikali 360 derajat tinggi yang kedua ini kita gunakan X = berarti 60° ya 60 derajat min 2 x = 108 derajat Min Berarti 140 kurang 30 adalah 150 derajat. Kemudian ditambahkan dikali 360 derajat 60 Kita pindah ruas maka min 2 x = 90 derajat ditambah k dikali 360 derajat kemudian ke 200 kita berbagi dengan min 2 agar kita dapat nilai x-nya x-nya = 45 derajat Min 45 derajat Min 45 derajat kemudian ditambah dengan dikurang karena negatif Min k dikali 180 derajat. Nah, kemudian kita cari nilainya kita coba kayaknya kita mulai dari negatif dua ya negatif 2 maka untuk nilai x nya = 360 derajat dikurang 45 315 derajat kemudian ketika kakaknya = negatif 1 dari nilai x nya = 135 derajat kemudian ketika kan yang sama dengan nol nilai x nya = Min 45 derajat nya tidak memenuhi 3y yang memenuhi hanya 315 dan 135 Nah tadi kita sudah dapat 195 dan 15 kita bahkan untuk yang kedua ini kita dapat 315 derajat dan 135 derajat sehingga untuk himpunan penyelesaian nya yaitu 15 derajat 135 derajat 195 derajat dan yang terakhir 315 derajat maka jawabannya adalah yang di Oke sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0904Sebuah talang air akan dibuat dari lembaran seng yang leb...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0653Himpunan semua bilangan real x pada selang [pi, 2 pi] y...Teks videoDisini kita mau punya soal mengenai persamaan trigonometri tanya himpunan penyelesaian dari cos X derajat maka 3 Sin X derajat 9 sampai 310 di mana X itu bilangan riil di sini kita menggunakan rumus a cos X + B Sin x = a kuadrat + b kuadrat dan Alfa = Tan invers karena itu kita saling kenal soalnya cos 3 derajat = akan kita ubah ke bentuk cos Alfa di sini itu derajat 1 yaitu minus akar 3. Oleh karena itu hanya terdapat = akar 1 kuadrat Ini = 4 berarti 2 terdapat hanya 2 x cos X minus. Apanya Ininya itu adalah minus ^ 3 hanya itu satu karena pembilangnya minus penyebutnya positif dan pembilang ini mau wahyukan sumbu y maka penyebutnya maka suhu es kita gambar lagi nyari masih dapatkan wajan 14 ini. Oleh karena itu bentuknya itu adalah 300 minus sesuatu kita misalkan b. Maka nilai B = akar 3 Tan ^ 3 itu derajat maka 60 derajat Karena itu adalah √ 3 = 3 derajat maka Sin 300° berada di kuadran 4 Karang termasuk rasa kebersamaan awal akan menjadi X minus 300 ini = akar 2 dari soalnya. Oleh karena itu ini x derajatSin X derajat + 300 derajat = 2 per 2 akar 25 derajat dari sini kita bisa diubah bentuknya X minus 300 derajat = 5 derajat + X 360 derajat dan kita jangan lupa bahwa cos a = cos a dengan menggunakan sifat ini kita juga bisa bilang Minus 3 derajat itu sama dengan minus 5 derajat + 1 derajat 2. Solusi atas itu derajat = 345 derajat ditambah k dikali 160 derajat untuk yang kedua X derajat = 255 derajat + k x yang memenuhi jalan batas ini hanyalah kata = 04 Min 90 x = 345 dan 0 Hp-nya 345 maka jawabannya yang ini nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul